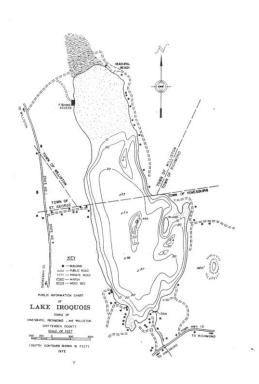



## TABLE OF CONTENTS

| Background                                                | <br>1   |  |
|-----------------------------------------------------------|---------|--|
| Methods                                                   | <br>1   |  |
| Survey Sites                                              | <br>1   |  |
| Species List and Herbarium Specimens                      | <br>2   |  |
| Point Intercept Survey                                    | <br>2   |  |
| Relative Abundance in the Point Intercept Surveys         | <br>3   |  |
| Results and Discussion                                    |         |  |
| Lake Iroquois Survey                                      | <br>4   |  |
| Summary                                                   | <br>10  |  |
| References                                                | <br>13  |  |
| Acknowledgements                                          | <br>14  |  |
| Appendix A. Lake Iroquois aquatic plant distribution maps | <br>A-1 |  |


# **List of Tables**

|          |                                                                              | Page   |
|----------|------------------------------------------------------------------------------|--------|
| Table 1  | Species list for Lake Iroquois                                               | 4      |
| Table 2  | Lake Iroquois percent frequency of occurrence data.                          | 6      |
| Table 3  | Lake Iroquois species richness comparison.                                   | 8      |
|          |                                                                              |        |
|          | List of Figures                                                              |        |
| Figure 1 | Map of Lake Iroquois with point intercept survey locations                   | Page 2 |
| Figure 2 | Depth distribution of Lake Iroquois sampling points in 1 meter depth classes | 5      |
| Figure 3 | Lake Iroquois frequency of occurrence summaries                              | 7      |
| Figure 4 | Lake Iroquois species richness                                               | 9      |
| Figure 5 | Distribution of Eurasian watermilfoil in Lake Iroquois                       | 12     |

# Background.

At the request of Jane Clifford of the Lake Iroquois Association, Spring and Fall 2025 quantitative aquatic plant surveys were undertaken for Lake Iroquois, Vermont. The surveys occurred one-year post-treatment following aquatic plant management efforts employing the herbicide ProcellaCOR EC for Eurasian watermilfoil control. The surveys largely duplicated 2017, 2019, 2021, 2022, 2023 and 2024 surveys conducted by the author (Eichler 2017, 2019, 2021, 2022, 2023 and 2024). The surveys consisted of frequency of occurrence and relative abundance data for all aquatic plant species present in points distributed throughout the lake. The Point-Intercept Rake Toss method presently used by the US Army Corps of Engineers and others was employed. The assessment includes the distribution and density of existing aquatic plant communities, the extent of exotic species infestation and a review of ongoing management efforts to control Eurasian watermilfoil (*Myriophyllum spicatum*). Vermont Department of Environmental Conservation (DEC) Grant-in-Aid funds were used to perform the Spring and Fall Lake Iroquois quantitative surveys.

# Methods Survey Sites



**Lake Iroquois**. Lake Iroquois is in Chittenden County, in the towns of Hinesburg, Richmond and Williston. The lake has a surface area of approximately 244 acres with a watershed area of 2198 acres. Lake Iroquois has a single outlet with a control structure to maintain lake level. Maximum water depth is reported to be 37 ft with average water depth of 19 feet (VTDEC 2016a). Secchi disk transparency in 2015 averaged 12 ft (3.8 m; VT DEC 2015). Lake Iroquois is classified as eutrophic based on phosphorous and chlorophyll concentrations, indicating that nutrient levels are sufficient to support dense growth of planktonic algae and aquatic plants. Two invasive aquatic plant species are reported for Lake Iroquois, Eurasian watermilfoil (Myriophyllum spicatum) and Curly-leaf Pondweed (Potamogeton crispus) (VT DEC 2016b). VT DEC records indicate that Eurasian watermilfoil was first confirmed in 1991 while curly-leaf pondweed was present in 1984. An aquatic plant survey of Lake Iroquois in September of 2014 reported over 70 acres

of dense Eurasian watermilfoil growth (Knoecklein 2015). A total of 45 aquatic plant species have been reported for Lake Iroquois in multiple surveys since 1984, however a 2014 survey only reported 23 species. Loss of native species is a commonly reported phenomenon in lakes with severe infestation by Eurasian watermilfoil and/or other invasive aquatic plant species (Madsen et al. 1991). In a survey conducted by the author in 2017, a total of 25 species of

aquatic plants were observed in Lake Iroquois (Eichler 2017). The aquatic plant community included sixteen submersed species, two floating-leaved species, and seven emergent species. Duck celery (Vallisneria americana) and coontail (Ceratophyllum demersum) were the most common native plants. Eurasian watermilfoil (Myriophyllum spicatum) was present in 24% of survey points. Small declines in the frequency of occurrence of most native species were observed in 2019 (19 of 23 species when compared to the 2017 survey), possibly as a result of the expansion of Eurasian watermilfoil to 43% of survey points. In the Spring of 2021 prior to herbicide treatment, Eurasian watermilfoil was present in 24% of survey points. In September post-treatment and again in June of 2022, Eurasian watermilfoil was absent from all survey points. In September of 2022, Eurasian watermilfoil was found at a single survey point at the south end of the lake. By June of 2023, Eurasian watermilfoil was reported at 2 survey points (3%) at the south end of the lake. By June of 2024, Eurasian watermilfoil had expanded to 28% of survey points. Dense growth of Eurasian watermilfoil was found along the west shore from the north end of the waterski course southward along the shoreline. Dense growth was also observed around the rocky island in the center of the lake, in the bay north of the large island and in the southeastern bay. Moderate and scattered Eurasian watermilfoil growth also occurred at the north end of the lake. Eurasian watermilfoil was absent from Lake Iroquois in September of 2024, post-treatment. In the Spring of 2025, dense growth of Eurasian watermilfoil was found in the mouth of Loon Bay and scattered Eurasian watermilfoil growth occurred at the southwest end of the lake. Scattered growth of Eurasian watermilfoil persisted in Loon Bay and at the southwest end of the lake in the Fall 2025 survey.

Hand harvesting efforts began on Lake Iroquois in 2008 to control dense growth of Eurasian watermilfoil. The aquatic weevil (*Euhrychiopsis lecontei*) population was supplemented in 2008 and 2009 to provide a biocontrol agent for Eurasian watermilfoil. Extensive growth of Eurasian watermilfoil reported in 2014 suggested a more intensive management effort was necessary. In

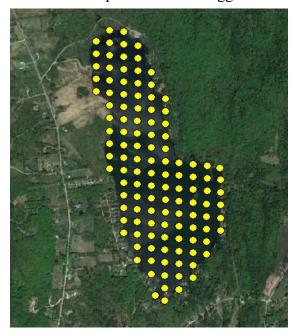



Figure 1. Map of Lake Iroquois with point intercept survey locations.

2016, diver assisted suction harvesting (DASH) for Eurasian watermilfoil control was employed in the boat launch area and near the LIRD beach. Over a period of 2 weeks, divers harvested over 5000 gallons of Eurasian watermilfoil. Benthic barriers (mats) were installed in 2017 to maintain the areas harvested by DASH in 2016. In 2019, DASH collected approximately 2000 gallons of Eurasian watermilfoil, representing a fraction of Eurasian watermilfoil growth. Residents remained concerned that Eurasian watermilfoil growth was exceeding the capacity of the existing management effort. The management effort was expanded in 2021 to include an herbicide, with 40 acres at the north end of Lake Iroquois treated with ProcellaCOR EC. No organized management efforts occurred in 2022. Annual DASH occurred in 2023 through 2025, with a ProcellaCOR EC treatment in 2024.

*Species List and Herbarium Specimens*. As the lake was surveyed, the occurrence of each aquatic plant species observed in the lake was recorded and herbarium specimens collected where necessary. Herbarium specimens were pressed, dried, and mounted (Hellquist 1993); and became part of the permanent collection at the Darrin Fresh Water Institute in Bolton Landing, NY. All taxonomy is based on Crow & Hellquist, 2000.

**Point Intercept Surveys.** The frequency and richness of aquatic plant species were evaluated using a point intercept method (Madsen 1999). At each grid point intersection, all species located at that point were recorded, as well as water depth. Species were located by a visual inspection of the point and by deploying a rake to the bottom, and examining retrieved plants. A total of 76 points were surveyed in the Spring, and 81 points were surveyed in the Fall for Lake Iroquois, based on a 100 m grid. Point intercept plant frequencies were surveyed on June 11, and September 10, 2025 to provide pre- and post-management data. A global positioning system (GPS) was used to navigate to each point for the survey observation.

**Relative abundance in the Point Intercept surveys.** To characterize relative abundance of each of the species identified in the point intercept survey, a scale developed by Cornell University and the US Army Corps of Engineers was employed. For each rake toss, the relative abundance of each plant species collected was recorded based on this rating scale. Maps of the distribution of each species by its relative abundance is included in Appendix A.

Relative abundance scale based on US Army Corp/Cornell methods.

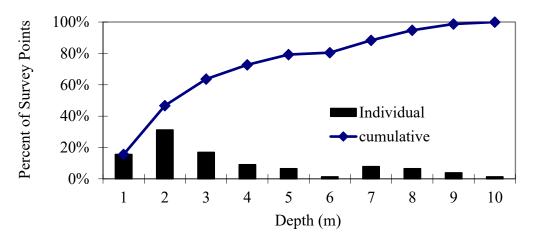
| Code | Rating                  | Abundance                    |  |  |
|------|-------------------------|------------------------------|--|--|
| 0    | no plants               |                              |  |  |
| 1    | trace growth of plants  | fingerful on rake            |  |  |
| 2    | sparse growth of plants | handful on rake              |  |  |
| 3    | medium growth of plants | rakeful of plants            |  |  |
| 4    | dense growth of plants  | difficult to bring into boat |  |  |

#### Results and Discussion

In September of 2025, the aquatic plant community of Lake Iroquois included twenty-five submersed species, three floating-leaved species, two floating species and five emergent species (Table 1), including some species observed but not collected in the point intercept survey. Twenty-one species were present in the point intercept portion of the 2025 survey, comparable to the 20, 23, 24, 26, 25, 19 and 23 species reported in 2024, 2023, 2022, 2021, 2019, 2017 and 2014, even though a greater number of survey points were included in 2014. Combining the results of all surveys, a total of 45 aquatic plant species have been reported for Lake Iroquois, however many of these are classified as wetland species not typically captured by the current survey technique. This number of species greatly exceeds the 15 species typically reported for moderately productive lakes in our region and indicates good water quality and a variety of habitat types. Eurasian watermilfoil (*Myriophyllum spicatum*) and curly-leaf pondweed (*Potamogeton crispus*) were the only exotic species reported in Lake Iroquois. Species richness was quite high, with many species occurring in more than 5% of survey points (Table 2).

Table 1. Species list for Lake Iroquois. Species in red are invasive.

| Species Name                                 | Common Name            | Habit |  |
|----------------------------------------------|------------------------|-------|--|
|                                              |                        |       |  |
| Brasenia schreberi                           | water shield           | fl    |  |
| Ceratophyllum demersum L.                    | Coontail               | S     |  |
| Chara sp.                                    | muskgrass, chara       | S     |  |
| Eleocharis acicularis (L.) Roemer & Schultes | needle spike-rush      | e     |  |
| Elodea canadensis Michx.                     | Waterweed              | S     |  |
| Fontinalis sp.                               | Moss                   | S     |  |
| Isoetes echinospora Dur.                     | Quillwort              | S     |  |
| Lemna minor L.                               | Duckweed               | f     |  |
| Lemna trisulca L.                            | duckweed               | f     |  |
| Megalodonta (Bidens) beckii Torr.            | water marigold         | S     |  |
| Myriophyllum spicatum L.                     | Eurasian watermilfoil  | S     |  |
| Najas flexilis (Willd.) Rostk. & Schmidt.    | bushy pondweed         | S     |  |
| Najas guadalupensis L.                       | southern naiad         | S     |  |
| Nuphar variegata                             | yellow pondlily        | fl    |  |
| Nymphaea odorata Ait.                        | white waterlily        | fl    |  |
| Polygonum amphibium                          | smartweed              | e     |  |
| Pontederia cordata L.                        | pickerelweed           | e     |  |
| Potamogeton amplifolius Tuckerm.             | large-leaf pondweed    | S     |  |
| Potamogeton crispus L.                       | curly-leaf pondweed    | S     |  |
| Potamogeton foliosus Raf.                    | pondweed               | S     |  |
| Potamogeton natans L.                        | floating-leaf pondweed | S     |  |
| Potamogeton perfoliatus L.                   | clasping-leaf pondweed | S     |  |
| Potamogeton praelongus Wulfen                | white-stem pondweed    | S     |  |


| Species Name                    | Name Common Name      |   |
|---------------------------------|-----------------------|---|
|                                 |                       |   |
| Potamogeton pusillus L.         | small pondweed        | S |
| Potamogeton richardsonii Oakes  | Richardsons' pondweed | S |
| Potamogeton robbinsii           | Robbins' pondweed     | S |
| Potamogeton spirillus Tuckerm.  | pondweed              | S |
| Potamogeton zosteriformis Fern. | flat-stem pondweed    | S |
| Ranunculus longirostris Godron  | white watercrowfoot   | S |
| Sparganium sp.                  | bur-reed              | e |
| Typha sp.                       | cattail               | e |
| Utricularia gibba L.            | humped bladderwort    | S |
| Utricularia vulgaris L.         | great bladderwort     | S |
| Vallisneria americana L.        | wild celery           | S |
| Zosterella dubia (Jacq.) Small  | water stargrass       | S |

f=floating fl=floating leaved e=emergent s=submersed

#### **Maximum Depth of Colonization**

Maximum depth of rooted aquatic plant growth, termed the littoral zone, extended approximately 5.0 meters (16 feet). The majority of survey points were in the littoral zone (Figure 2), providing a reasonable representation of the plant population of Lake Iroquois.

Figure 2. Depth Distribution of Lake Iroquois Sampling Points in 1 meter depth classes.



#### **Species Lists**

Maps of the distribution of aquatic plant species for Lake Iroquois are included in Appendix A. Frequency of occurrence results are presented in Table 2. For the June, one-year post-treatment survey, waterweed (*Elodea canadensis*) was the most common plant (42% of survey points). Eurasian watermilfoil (*Myriophyllum spicatum*) was present in 3% of the survey points. Curlyleaf pondweed, another invasive species, was present in 14% of survey points. Common native species in the June 2025 survey for Lake Iroquois included *Chara* (39% of survey points),

Zosterella dubia (22%), Potamogeton zosteriformis (22%), Potamogeton amplifolius (10%), Potamogeton foliosus (10%), Nymphaea odorata (8%), Ceratophyllum demersum (6%), Potamogeton praelongus (6%), and Eleocharis acicularis (6%). While the Spring survey provides confirmation of the distribution of Eurasian watermilfoil, a perennial species, the timing of the survey precludes determination of the distribution and relative abundance of most native species that have not started growing this early in the season. The remainder of this report will focus on comparison of the Fall survey results.

Table 2. Lake Iroquois percent frequency of occurrence data for Fall surveys only.

| Species Name                                 | Common Name            | Fall 2023 | Fall 2024 | Fall 2025 |
|----------------------------------------------|------------------------|-----------|-----------|-----------|
|                                              |                        |           |           |           |
| Ceratophyllum demersum L.                    | Coontail               | 11.4%     | 5.1%      | 5.1%      |
| Chara sp.                                    | muskgrass, chara       | 46.8%     | 39.2%     | 39.2%     |
| Eleocharis acicularis (L.) Roemer & Schultes | needle spike-rush      | 3.8%      | 1.3%      | 5.1%      |
| Elodea canadensis Michx.                     | Elodea                 | 43.0%     | 51.9%     | 50.6%     |
| Fontinalis sp.                               | Moss                   |           | 2.5%      |           |
| Lemna trisulca L.                            | Duckweed               | 1.3%      |           |           |
| Myriophyllum spicatum L.                     | Eurasian watermilfoil  | 19.0%     |           | 3.8%      |
| Najas flexilis (Willd.) Rostk. & Schmidt.    | bushy pondweed         | 13.9%     | 3.8%      | 5.1%      |
| Nymphaea odorata Ait.                        | white waterlily        | 15.2%     | 10.1%     | 16.5%     |
| Polygonum amphibium                          | Smartweed              | 1.3%      | 1.3%      | 2.5%      |
| Potamogeton amplifolius Tuckerm.             | largeleaf pondweed     | 7.6%      | 17.7%     | 20.3%     |
| Potamogeton foliosus Raf.                    | Pondweed 13.0%         |           | 13.0%     | 1.3%      |
| Potamogeton gramineus                        | variable pondweed      | 1.3%      | 5.1%      | 1.3%      |
| Potamogeton perfoliatus L.                   | clasping-leaf pondweed | 2.5%      | 1.3%      | 2.5%      |
| Potamogeton praelongus Wulfen                | white-stem pondweed    | 13.9%     | 3.8%      | 5.1%      |
| Potamogeton pusillus L.                      | small pondweed         | 13.9%     | 7.6%      | 13.9%     |
| Potamogeton robbinsii                        | Robbins' pondweed      |           |           | 2.5%      |
| Potamogeton richardsonii Oakes               | Richardsons' pondweed  | 5.1%      |           | 2.5%      |
| Potamogeton zosteriformis Fern.              | flat-stem pondweed     | 36.7%     | 29.1%     | 40.5%     |
| Ranunculus longirostris Godron               | white watercrowfoot    | 3.8%      | 7.6%      | 2.5%      |
| Sparganium sp.                               | burreed                | 1.3%      | 1.3%      |           |
| Typha sp.                                    | cattail                | 1.3%      |           |           |
| Utricularia gibba L.                         | humped bladderwort     | 3.8%      | 1.3%      | 1.3%      |
| Utricularia vulgaris L.                      | great bladderwort      | 11.4%     | 10.1%     | 3.8%      |
| Vallisneria americana L.                     | wild celery            | 39.2%     | 43.0%     | 27.8%     |
| Zosterella dubia (Jacq.) Small               | water stargrass        | 27.8%     | 17.7%     | 10.1%     |

For the September 2025 one-year post-treatment sample, waterweed (*Elodea canadensis*) remained the most common species, present in 51% of survey points. Eurasian watermilfoil (*Myriophyllum spicatum*) was present in 4% of survey points. Common native species included *Potamogeton zosteriformis* (41% of survey points), *Chara* sp. (39%), *Vallisneria americana* 

(28%), Potamogeton amplifolius (20%), Nymphaea odorata (17%), Potamogeton pusillus (14%), Zosterella dubia (10%), Najas flexilis (5%), Eleocharis acicularis (5%), Ceratophyllum demersum (5%), and Potamogeton praelongus (5%).

Native species results were generally comparable to those reported in prior surveys with a few exceptions. A common native species, *Ceratophyllum demersum*, was dominant in Lake Iroquois in 2017 but was observed at lower frequency of occurrence in 2019 through 2025. This species is known to be sensitive to ProcellaCOR. Pondweed species (*Potamogeton amplifolius*, *P. foliosus* and *P. zosteriformis*) were generally more abundant in September post-treatment surveys, particularly Broad-leaf Pondweed (*Potamogeton amplifolius*). Slight declines in the frequency of occurrence of the majority of native species were observed (19 of 23 species) between 2017 and 2019. Most of these species increased in frequency of occurrence in 2021 through 2023 surveys. In 2024, 16 of the 19 native species declined in frequency of occurrence. In 2025, 12 of 20 native species increased in frequency of occurrence. Declines in most native species are observed as a result of invasion and canopy formation by Eurasian watermilfoil, with recovery generally rapid after removal of the canopy.

Seventy-two percent of whole lake sampling points were vegetated by at least one native plant species (Figure 3), 88% of survey points with depths less than 5 m (Figure 4) and 95% of survey points with depths less than 2 meters depth yielded native aquatic plants in Fall of 2025. These results are comparable to 2024, 2023 and 2022, when 73%, 75% and 76% of whole lake



Figure 3. Lake Iroquois frequency of occurrence summaries.

sampling points were vegetated by native plants. In 2021, seventy-five percent of whole lake sampling points were vegetated by at least one native plant species, 94% of survey points with depths less than 5 m and 100% of survey points with depths less than 2 meters depth were vegetated by at least one native plant species. In 2019, forty-five percent of whole lake sampling points were vegetated by at least one native plant species, 91% of survey points with depths less than 5 m and 97% of survey points with whole lake sampling points were vegetated by at least

one native plant species. Eurasian watermilfoil was present in 4% of survey points in the Fall of 2025, absent in the Fall survey of 2024, present in 19% of survey points in the Fall of 2023 and 1% of survey points in the Fall of 2022. Absent in 2021, Eurasian watermilfoil was present in 43% of whole lake survey points, and 86% of survey points less than 5 m water depth in 2019, representing the littoral zone or zone of aquatic plant growth. For survey points within the littoral zone, water depth less than 5 m, results similar to whole lake surveys are reported. The expected relationship of greater frequency of occurrence of aquatic plants with shallower water depth is consistent with that reported by other regional studies.

Littoral zone frequency of occurrence values for both survey years were dominated by native species and similar to nearby lakes (Getsinger et al. 2002). Species richness is presented in Table 3 and Figure 4. Whole lake native species richness in 2025 was 2.45 species per sample

Table 3. Lake Iroquois species richness comparison.

| Plant        | Water Depth  | Summary    | Survey Result |      |      |      |      |
|--------------|--------------|------------|---------------|------|------|------|------|
| Grouping     | Class        | Statistic  | 2021          | 2022 | 2023 | 2024 | 2025 |
| Native plant | Whole Lake   | Mean       | 2.65          | 2.94 | 3.06 | 2.61 | 2.45 |
| species      | (all depths) | N          | 77            | 79   | 79   | 79   | 81   |
|              |              | Std. Error | 0.26          | 0.25 | 0.27 | 0.24 | 0.22 |
|              | Points with  | Mean       | 3.33          | 3.75 | 4.03 | 3.38 | 3.05 |
|              | depths <5m   | N          | 61            | 63   | 60   | 61   | 65   |
|              |              | Std. Error | 0.26          | 0.22 | 0.24 | 0.23 | 0.21 |
|              | Points with  | Mean       | 4.11          | 4.35 | 4.23 | 4.08 | 3.73 |
|              | depths <2m   | N          | 36            | 43   | 40   | 37   | 42   |
|              |              | Std. Error | 0.32          | 0.22 | 0.31 | 0.28 | 0.23 |
| All plant    | Whole Lake   | Mean       | 2.74          | 2.95 | 3.25 | 2.61 | 2.49 |
| species      | (all depths) | N          | 77            | 79   | 79   | 79   | 81   |
|              |              | Std. Error | 0.26          | 0.25 | 0.29 | 0.24 | 0.22 |
|              | Points with  | Mean       | 3.44          | 3.77 | 4.28 | 3.38 | 3.09 |
|              | depths <4m   | N          | 61            | 63   | 60   | 61   | 65   |
|              |              | Std. Error | 0.27          | 0.22 | 0.26 | 0.23 | 0.21 |
|              | Points with  | Mean       | 4.25          | 4.37 | 4.50 | 4.08 | 3.78 |
|              | depths <2m   | N          | 36            | 43   | 40   | 37   | 42   |
|              |              | Std. Error | 0.33          | 0.23 | 0.34 | 0.28 | 0.25 |

point similar to the 2.61, 3.06, 2.94, 2.65, 1.50 and 2.13 reported in 2024, 2023, 2022, 2021, 2019 and 2017, respectively. Species richness in this range is comparable to nearby lakes (Eichler 2016). For survey points exclusively within the littoral zone (depths less than 5 meters), native species richness was 3.05, 3.38, 4.03, 3.75, 3.33, 3.02 and 3.62 species per survey point (Figure 4) for 2025, 2024, 2023, 2022, 2021, 2019 and 2017, respectively. As expected, species richness in the littoral zone and its shallow fringe was higher than whole lake species richness and native species richness increased with the removal of Eurasian watermilfoil.

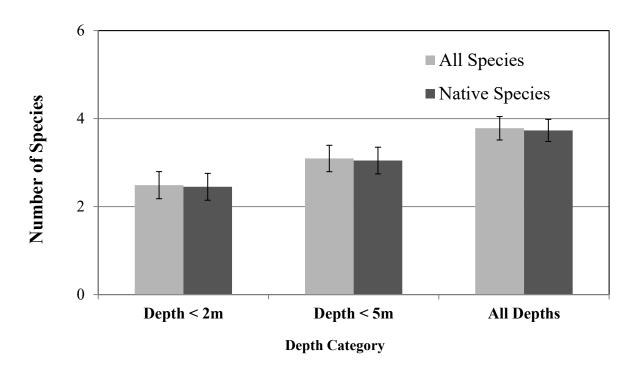



Figure 4. Lake Iroquois species richness. Error bars are standard error of the mean

## Summary

Spring and Fall quantitative aquatic plant surveys were undertaken for Lake Iroquois, Vermont in June and September 2025. The surveys occurred one-year post-treatment for aquatic plant management efforts employing the herbicide ProcellaCOR EC and diver assisted suction harvesting (DASH) for Eurasian watermilfoil control. The September component of the survey duplicated prior surveys conducted by the author (Eichler 2024). The surveys consisted of frequency of occurrence and relative abundance data for all aquatic plant species present in points distributed throughout the lake. The Point-Intercept Rake Toss method presently used by the US Army Corps of Engineers and others was employed. The assessment generated the information necessary to: 1) evaluate the effectiveness of the aquatic plant management efforts, 2) determine the impact of the management efforts on non-target aquatic plant species, and 3) provide data for comparison of post-treatment conditions to prior survey information.

Eurasian watermilfoil (*Myriophyllum spicatum*) populations were first reported in 1990 in Lake Iroquois and confirmed in 1991. Hand harvesting by skin and SCUBA divers has been the basis of the program since the formation of the lake association in 2007. The aquatic weevil (*Euhrychiopsis lecontei*) population of the lake was supplemented in 2008 and 2009 to provide a biocontrol agent for Eurasian watermilfoil. However, by 2014 approximately 70 acres of Lake Iroquois was reported to support dense growth of Eurasian watermilfoil. Benthic barrier and diver assisted suction harvesting (DASH) were included in 2016 through 2019. A more intensive management effort based on herbicide treatment occurred in the Spring of 2021. No organized management efforts occurred in 2022. Limited diver assisted suction harvesting (DASH) was employed in 2023, however a report of dense growth of Eurasian watermilfoil to the west of the water ski course suggested the need for a more intensive management strategy. Four areas of Lake Iroquois were treated with the herbicide ProcellaCOR EC in 2024. DASH was conducted in 2025.

The aquatic plant community of Lake Iroquois in 2025 included twenty-five submersed species, three floating-leaved species, two floating species and five emergent species. Twenty-two species were collected in the point intercept portion of the survey, comparable to the 20, 23, 24, 26, 25, 19, and 23 species reported in 2024, 2023, 2022, 2021, 2019, 2017 and 2014, respectively. This number of species greatly exceeds the 15 species typically reported for moderately productive lakes in our region and indicates good water quality and a variety of habitat types. Two of the species present in Lake Iroquois, Humped Bladderwort (*Utricularia gibba*) and White Watercrowfoot (*Ranunculus longirostris*) are found on Vermont's rare plant list (VT DEC 2022).

Eurasian watermilfoil was present in 4% of survey points in the Fall of 2025. Eurasian watermilfoil was absent post-treatment from the Fall 2024 survey. Pre-treatment in June of 2024, Eurasian watermilfoil had expanded to 28% of survey points. Eurasian watermilfoil was reported for 3% of survey points in the Spring of 2023 and 19% of survey points in the Fall 2023 survey. Present in 1% of survey points in the Fall 2022 survey, Eurasian watermilfoil was absent in the Spring of 2022 and Fall, post-treatment survey of 2021. Eurasian watermilfoil was present in 24% of survey points in the Spring of 2021, 43% of survey points in the Fall of 2019 and 24% of survey points in the Fall of 2017, representing a decline from the dense growth reported for over

67% of the littoral zone in 2014. The density of Eurasian watermilfoil growth also varied, with most points described as dense growth in 2014 reduced to scattered or moderate growth in 2017 and 2019. Absent in the Fall 2021 and Spring 2022 surveys, Eurasian watermilfoil was reported as scattered growth at a single location in the Fall of 2022. By the Fall 2023 survey scattered growth of Eurasian watermilfoil was reported in several locations and dense growth was reported in the north end of the lake west of the water ski course. In the Spring of 2024, dense growth of Eurasian watermilfoil was found along the west shore from the north end of the waterski course southward along the shoreline. Dense growth was also observed around the rocky island in the center of the lake, in the bay north of the large island and in the southeastern bay. Moderate and scattered Eurasian watermilfoil growth also occurred at the north end of the lake. Eurasian watermilfoil was absent in the Fall 2024 survey, post-treatment with the herbicide ProcellaCOR EC. In the Spring of 2025, dense growth of Eurasian watermilfoil was found in the mouth of Loon Bay and scattered Eurasian watermilfoil growth occurred at the southwest end of the lake. Scattered growth of Eurasian watermilfoil persisted in Loon Bay and at the southwest end of the lake in the Fall 2025 survey.

Species richness in Lake Iroquois was quite high, with several species occurring in more than 5% of survey points. Seventy-two percent of sampling points were vegetated by at least one native plant species in the Fall 2025 survey. The large number of points supporting native plant species suggests that Lake Iroquois is a prime candidate for recovery of its native plant population following management of Eurasian watermilfoil. Native species richness in the littoral zone was 3.05, 3.38, 4.03, 3.75, 3.33, 3.02 and 3.62 species per sample in 2025, 2024, 2023, 2022, 2021, 2019 and 2017, respectively; and at the high end of species richness values for other regional lakes, which ranged from 1.79 to 4.00 species per sample.

Common native species for Lake Iroquois in the Fall 2025 survey included waterweed (*Elodea* canadensis, 49% of survey points), flat-stem pondweed (Potamogeton zosteriformis, 40%), muskgrass Chara/Nitella, 38%), wild celery (Vallisneria americana, 27%), broad-leaf pondweed (Potamogeton amplifolius, 20%), white waterlily (Nymphaea odorata, 16%), small pondweed (Potamogeton pusillus, 14%), water stargrass (Zosterella dubia, 10%), coontail (Ceratophyllum demersum, 5%), white-stem pondweed (Potamogeton praelongus, 5%), bushy pondweed (Najas flexilis, 5%), needle spike-rush (Eleocharis acicularis, 5%), and variable pondweed (Potamogeton gramineus, 5%). Native species results are generally comparable to those reported in prior surveys with a few exceptions. A common native species, Ceratophyllum demersum, remains dominant in Lake Iroquois but at lower frequency of occurrence. This species is known to be sensitive to ProcellaCOR. Pondweed species (Potamogeton amplifolius, P. pusillus and P. zosteriformis) were generally more abundant in September post-treatment surveys, particularly Broad-leaf Pondweed. Declines in most native species are observed as a result of invasion and canopy formation by Eurasian watermilfoil, with recovery generally rapid after removal of the canopy. Shifts in plant growth from year to year are common, particularly with new invaders like Eurasian watermilfoil. These shifts are often attributed to changing weather patterns, plant disease outbreaks or differences in the abundance of plant predators.

Eurasian watermilfoil growth in Lake Iroquois was present primarily as scattered and moderate density growth in September of 2017, while native plant populations were robust and similar to other regional lakes. By the Fall 2019, moderate to dense growth of Eurasian watermilfoil was

more typical and native plant populations had declined. In May of 2021 immediately prior to application of ProcellaCOR EC, Eurasian watermilfoil frequency of occurrence was similar to Fall 2017 and was most abundant at the north end of the lake, the area chosen for treatment with the herbicide. Eurasian watermilfoil was absent in post-treatment surveys in September of 2021 and June of 2022, most likely attributable to the use of herbicide. In September of 2022, Eurasian watermilfoil was present in 1% of survey points. In June of 2023, Eurasian watermilfoil was reported at 2 survey points (3%) at the south end of the lake, increasing to 19% of survey points by September of 2023 (Figure 5). In June of 2024 pre-treatment, Eurasian watermilfoil had expanded to 28% of survey points. Following the ProcellaCOR EC treatment, Eurasian watermilfoil had returned to 4% of survey points.

Figure 5. Distribution of Eurasian watermilfoil in Lake Iroquois. Eurasian watermilfoil was absent from the 2024 Fall survey.

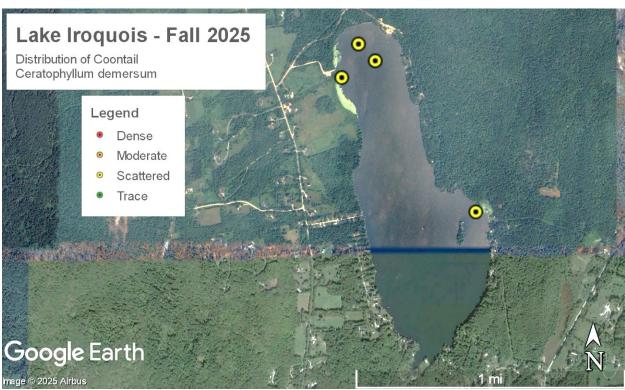


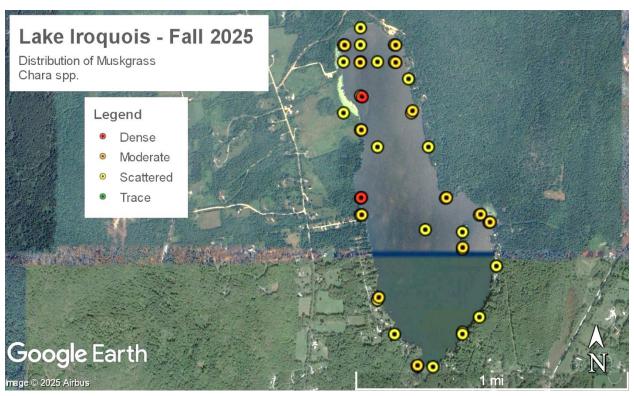
#### References

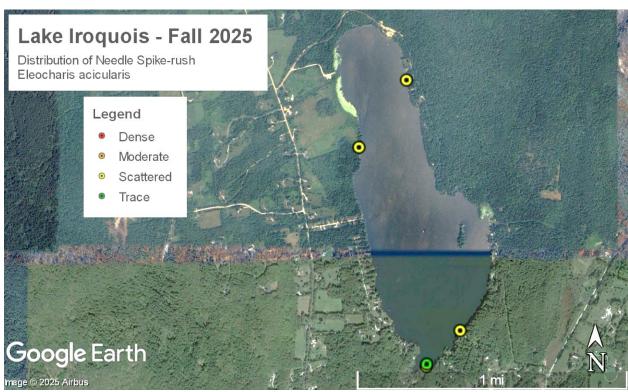
- Crow, G.E. and C.B. Hellquist. 2000. Aquatic and wetland plants of northeastern North America. 2 Volumes. University of Wisconsin Press, Madison, WI.
- Eichler, L.W. 2016. Aquatic vegetation of Lake Dunmore and Fern Lake, Vermont 2016. Prepared for Vermont DEC & the Lake Dunmore Association. DFWI Technical Report 2016-11. Darrin Fresh Water Institute, Bolton Landing, NY.
- Eichler, L.W. 2017. Aquatic vegetation of Lake Iroquois and Sunset Pond, Chittenden County, Vermont 2017. Prepared for Vermont DEC & the Lake Iroquois Association. DFWI Technical Report 2017-6. Darrin Fresh Water Institute, Bolton Landing, NY.
- Eichler, L.W. 2019. Aquatic vegetation of Lake Iroquois, Chittenden County, Vermont 2019. Prepared for Vermont DEC & the Lake Iroquois Association. DFWI Technical Report 2019-10. Darrin Fresh Water Institute, Bolton Landing, NY.
- Eichler, L.W. 2021. Aquatic vegetation of Lake Iroquois, Chittenden County, Vermont 2021. Prepared for Vermont DEC & the Lake Iroquois Association. DFWI Technical Report 2021-2. Darrin Fresh Water Institute, Bolton Landing, NY.
- Eichler, L.W. 2022. Aquatic vegetation of Lake Iroquois, Chittenden County, Vermont 2022. Prepared for Vermont DEC & the Lake Iroquois Association. Prepared by Lawrence Eichler, Scientific Consultant, Lake George, NY. September 2022.
- Eichler, L.W. 2023. Aquatic vegetation of Lake Iroquois, Chittenden County, Vermont 2023. Prepared for Vermont DEC & the Lake Iroquois Association. Prepared by Lawrence Eichler, Scientific Consultant, Lake George, NY. September 2023.
- Eichler, L.W. 2024. Aquatic vegetation of Lake Iroquois, Chittenden County, Vermont 2024. Prepared for Vermont DEC & the Lake Iroquois Association. Prepared by Lawrence Eichler, Scientific Consultant, Lake George, NY. October 2024.
- Getsinger et al., K.D., R.M. Stewart, J.D. Madsen, A.S. Way, C.S. Owens, H.A. Crosson, and A.J. Burns. 2002. Use of Whole-Lake Fluridone Treatments to Selectively Control Eurasian Watermilfoil in Burr Pond and Lake Hortonia, VT. US Army Corps of Engineers, Engineer Research and Development Ctr., Aquatic Plant Control Res. Program. ERDC/EL TR-02-39.
- Hellquist, C.B. 1993. Taxonomic considerations in aquatic vegetation assessments. Lake and Reserv. Manage. 7:175-183.
- Knoecklein, G. 2015. Lake Iroquois aquatic plant survey. Northeast Aquatic Research, LLC, Mansefield, CT. February 2015. <a href="http://www.lakeiroquois.org/home/announcements/milfoilreportnowavailable">http://www.lakeiroquois.org/home/announcements/milfoilreportnowavailable</a>
- Madsen, J.D. 1999. Point intercept and line intercept methods for aquatic plant management. US Army Engineer Waterways Experiment Station Aquatic Plant Control Research Program Technical Note CC-02, Vicksburg, MS.
- Madsen, J.D., L.W. Eichler, and C.W. Boylen. 1988. Vegetative spread of Eurasian watermilfoil in Lake George, New York. J. Aquat. Plant Manage. 26, 47-50.
- Madsen J.D., J.W. Sutherland, J.A. Bloomfield, L.W. Eichler and C.W. Boylen. 1991. Decline of

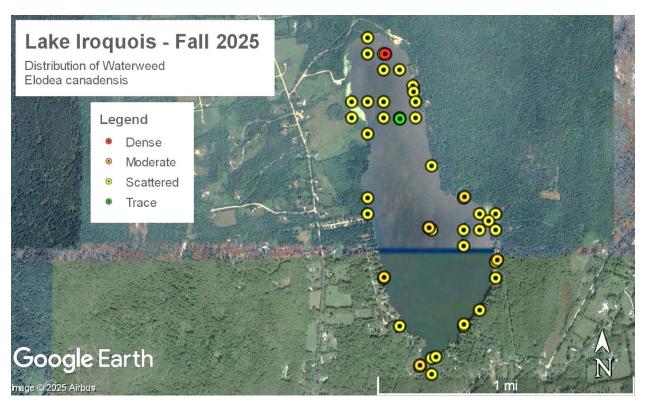
- native vegetation under a canopy of Eurasian watermilfoil. J. Aquatic Plant Manage. 29:94-99.
- VT DEC. 2010. Vermont Department of Environmental Conservation Lay Monitoring Program. www.anr.state.vt.us/dec/waterq/cfm/lakerep/lakerep\_details.cfm
- VT DEC. 2012. Rare and Uncommon Native Vascular Plants of Vermont. Vermont Natural Heritage Inventory. Vermont Fish & Wildlife Department. 21 November 2012.


  <a href="https://www.vtfishandwildlife.com/.../List\_">www.vtfishandwildlife.com/.../List\_</a>
  of Rare and Uncommon Native Plants of Vermont.pdf
- VT DEC. 2016. Vermont Department of Environmental Conservation Lay Monitoring Program. Online, September 2017. www.anr.state.vt.us/dec/waterq/cfm/lakerep/lakerep\_details.cfm
- VT DEC. 2016a. Vermont Department of Environmental Conservation webpage. Depth charts for Vermont lakes. Online, December 2016. www.watershedmanagement.vt.gov/lakes/htm/lp\_depthcharts.htm
- VT DEC. 2016b. Vermont Department of Environmental Conservation webpage. Waterbodies infested with aquatic invasive species. Online, December 2016. <a href="http://dec.vermont.gov/sites/dec/files/wsm/lakes/ans/docs/lp\_InfestedWaterBodiesList20">http://dec.vermont.gov/sites/dec/files/wsm/lakes/ans/docs/lp\_InfestedWaterBodiesList20</a> 16.pdf
- VT DEC. 2022. Rare and Uncommon Native Vascular Plants of Vermont. Vermont Natural Heritage Inventory. Vermont Fish & Wildlife Department. 4 May 2022. www.vtfishandwildlife.com/.../List of Rare and Uncommon Native Plants of Vermont.pdf


### Acknowledgements


The author would like to acknowledge Pat Suozzi and Jane Clifford of the Lake Iroquois Association for their assistance in coordinating the current survey project.


# Appendix A


Lake Iroquois Aquatic Plant Distribution Maps

